Indolopyridines containing a bridgehead heteroatom 12.* Synthesis and reduction of

12-arylidene-5,6-dihydroindolo[2,1-a]isoquinolinium trifluoroacetates

A. T. Soldatenkov, S. A. Soldatova, M. A. Ryashentseva, ** Zh. Ntaganda, O. V. Zvolinskii, E. N. Smirnova, and M. D. Kharlamova

^aPeoples Friendship University, 3 ul. Ordzhonikidze, 117198 Moscow, Russian Federation. Fax: +7 (095) 952 0745. E-mail: asoldatenkov@sci.pfu.edu.ru ^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: secretary@ioc.ac.ru

Condensation of 5,6-dihydroindolo[2,1-a]isoquinoline with aromatic aldehydes in trifluoroacetic acid afforded 12-arylidene-5,6-dihydroindolo[2,1-a]isoquinolinium trifluoroacetates. Hydrogenolysis of these salts on rhenium heptasulfide at elevated temperature and hydrogen pressure yielded indolo[2,1-a]isoquinolines, while reduction with sodium borohydride gave 12-arylmethylindoloisoquinolines. Photoluminescence was found for some indolo[2,1-a]isoquinolines.

Key words: 5,6-dihydroindolo[2,1-*a*]isoquinolines, 12-arylidene-5,6-dihydroindolo[2,1-*a*]isoquinolinium trifluoroacetates, 12-benzylindolo[2,1-*a*]isoquinolines, reduction, hydrogenolysis, rhenium heptasulfide, sodium borohydride, photoluminescent properties.

In the preceding work, 1 we synthesized a number of 12-arylideneindolo[2,1-a]isoquinolinium acetates, trichloroacetates, and trifluoroacetates, which are potential luminophores. The present study is devoted to the synthesis of analogous quaternary salts containing a partially hydrogenated indolopyridine fragment, their reduction under various conditions, and the photoluminescent properties of the compound obtained.

Condensation of 5,6-dihydroindolo[2,1-a]isoquinoline (1) with some aromatic aldehydes in trifluoroacetic acid (TFA) at ~20 °C gave 12-arylidene-5,6-dihydroindolo[2,1-a]isoquinolinium salts 2a—f, which were isolated as high-melting colored crystals (Scheme 1; Tables 1, 2). The yields of these products were 33 to 57%; *i.e.*, they are significantly lower than the yields of the previously synthesized¹ analogous aromatic salts 3a—c. Apparently, this is associated with partial hydrogenation of the starting heterocycle 1, which may be regarded as N-alkyl-2-arylindole and tends to oligomerize when protonated in acidic media.

Hydrogenation of nitrogen-containing fused aromatic compounds is known to be specifically affected by rhenium heptasulfide Re₂S₇.² Earlier,³ we found that the exocyclic C=C bond in 9-arylideneazafluorenes can be

Scheme 1

2: $R^1 = R^2 = H(a)$; $R^1 = H$, $R^2 = OMe(b)$; $R^1 = H$, $R^2 = NO_2(c)$; $R^1 = OH$, $R^2 = OMe(d)$; $R^1 = R^2 = OMe(e)$; R^1 , $R^2 = OCH_2O(f)$

hydrogenated with Re_2S_7 as a heterogeneous catalyst. In this study, selective hydrogenation of quaternary salts 2 was attempted under analogous conditions (H₂, 140 atm, 250 °C). This reaction could be expected to yield a hexahydro derivative of type A (its cyclic framework is contained in alkaloids cryptaustoline and cryptowoline⁴). However, compound 2a underwent hydrogenolysis to give product 1 in high yield (Scheme 2). The intermediate benzyl group in the β -position of the pyrrole ring is easily eliminated, which accounts for our failure to benzylate dihydro derivative 1 and indoloisoquinoline 4 with benzyl alcohol under analogous conditions of heterogeneous reductive alkylation.⁵

^{*} For Part 11, see Ref. 1.

Table 1. Characteristics of compounds 2a-f, 5a-c, and 6a-c

Com- pound		M.p. /°C	R_{f}	IR, v/cm ⁻¹	Fluorescence UV*,	MS, $m/z (I_{\rm rel} (\%))$	<u>Fou</u> Cal	nd culated	(%)	Molecular formula
					λ _{max} /nm		С	Н	N	
2a	36	174—176	0.48	1690, 1590, 1530	388	_	71.5 71.3	4.4 4.3	3.2 3.3	$C_{25}H_{18}F_3NO_2$
2 b	41	236—237	0.38	1700, 1600, 1510, 1310	385	_	68.7 69.2	4.1 4.4	2.9 3.1	$C_{26} H_{20} F_3 NO_3$
2c	57	>300	0.45	1690, 1600, 1525, 1345	376	_	64.7 64.4	3.6 3.6	5.8 6.0	$C_{25}H_{17}F_3N_2O_4$
2d	35	208—210	0.22	1530, 1690, 1610, 1540	384	_	67.0 66.8	<u>4.1</u> 4.3	$\frac{3.0}{2.9}$	$C_{26}H_{20}F_3NO_4$
2e	41	218—220	0.20	1680, 1610, 1510	_	_	67.5 67.4	4.6 4.6	3.0 2.9	$C_{27}H_{22}F_3NO_4$
2f	33	200—202	0.25	1690, 1600, 1520	384	_	67.5 67.1	4.0 3.9	3.1 3.0	$C_{26}H_{18}F_3NO_4$
5a	65	168—170	0.75	_	_	307 [M] ⁺ (100), 230 (59)	89.5 89.9	5.3 5.5	4.3 4.6	$C_{23}H_{17}N$
5b	73	108—110	0.69	_	386	337 [M] ⁺ (100), 230 (61)	85.3 85.4	5.3 5.6	4.0 4.2	$C_{24}H_{19}NO$
5c	75	173—174	0.60	1540, 1351	382	352 [M] ⁺ (100), 217 (16)	77.9 78.4	4.3 4.5	7.9 8.0	$C_{23}H_{16}N_2O_2$
6a	55	160—162	0.72	_	_	309 [M] ⁺ (100), 236 (63)	88.9 89.3	6.1 6.2	4.3 4.5	$\mathrm{C}_{23}\mathrm{H}_{19}\mathrm{N}$
6b	64	103—105	0.58	_	381	339 [M] ⁺ (100), 232 (49)	84.9 85.0	6.1 6.2	4.0 4.2	$C_{24}H_{21}NO$
6c	69	139—141	0.63	1535, 1345	378	364 [M] ⁺ (100), 232 (38)	77.9 78.0	5.0 5.1	7.6 7.9	$C_{23}H_{18}N_2O_2$

^{*} For compounds 1, 4, and 3a-c, $\lambda_{max} = 368$, 444, 452, 454, and 408 nm, respectively.

Sodium borohydride is known to reduce a pyridinium cation to dihydro- and tetrahydropyridine. Reduction of the five-membered pyrrole ring in indole is also possible with this reagent. For this reason, we attempted to reduce indoloisoquinoline 4 and quaternary salts 2 and 3 with NaBH₄.

It turned out that heterocycle **4** is not reduced with NaBH₄ either in water, ethanol, or acetic acid. In the

presence of a stronger acid (TFA), reduction did occur to give 5,6-dihydroindoloisoquinoline 1 in 20% yield (see Scheme 2).

Quaternary salts 2 and 3 contain a positively charged $>C=N^+<$ fragment incorporated both in the indolenine and pyridine rings; because of this, one could expect that the reactions of the starting salts with NaBH₄ in TFA would yield a tetrahydro derivative of type **B**. However,

Scheme 2

Com-	δ (J/Hz)							
pound	H(5)	H(6)	H arom.	Other protons				
2a	3.15 (t, J = 6.0)	4.28 (t)	6.80—8.10 (m, 14 H)					
2b	3.13 (t, J = 6.0)	4.25 (t)	6.80—8.10 (m, 12 H);	3.85, 3.91 (both s,				
	,	` '	7.12 (s, 13 H)*	3 H, OMe,				
			,	E: Z = 2:1)				
2c	3.13 (t, J = 6.0)	4.30 (t)	8.16, 7.60 (both d,					
			2 H each, $C_6H_4NO_2$,					
			J = 8.6); $6.60 - 7.45$					
			(m, 8 H); 7.30 (s, 13 H)*					
2d	3.05 (t, J = 6.0)	4.20 (t)	6.60—7.40 (m, 12 H)	3.90 (s, 3 H, OMe)				
2e	3.14 (t, J = 6.0)	4.15 (t)	6.70—7.50 (m, 11 H);	3.65, 3.91 (both s,				
			7.00 (s, 13 H)*	3 H each, OMe)				
2f	3.15 (t, J = 6.0)	4.28 (t)	6.70—7.40 (m, 11 H);	5.92 (s, 2 H, OCH ₂ O)				
			6.98 (s, 13 H)*	- 1				
5a	6.65 (d, J = 7.6)	8.10 (d)*	7.15—8.12 (m, 13 H)	4.70 (s, 2 H, $C_{\underline{H}_2}Ar$)				
5b	6.63 (d, J = 7.4)	8.00 (d)*	6.70—8.00 (m, 12 H)	3.70 (s, 3 H, OMe);				
				4.60 (s, 2 H, CH_2Ar)				
5c	6.83 (d, J = 7.4)	8.30 (d)	6.90—8.20 (m, 12 H)	4.26 (s, 2 H, C <u>H</u> ₂ Ar)				
6a	3.18 (t, J = 6.0)	4.30 (t)	7.10—7.55 (m, 13 H)	$4.50 \text{ (s, 2 H, C}_{\underline{H}_2}\text{Ar)}$				
6b	3.20 (t, J = 6.0)	4.28 (t)	6.90—7.70 (m, 12 H)	3.80 (s, 3 H, OMe);				
				4.46 (s, 2 H, C <u>H</u> ₂ Ar)				
6c	3.19 (t, J = 6.4)	4.32 (t)	7.11—7.45 (m, 10 H);	4.57 (s, 2 H, C <u>H</u> ₂ Ar)				
			8.13 (d, 2 H, $C_6H_4NO_2$,					
			J = 8.5)					

Table 2. ¹H NMR spectra of compounds 2a-f, 5a-c, and 6a-c

salts $3\mathbf{a} - \mathbf{c}$ were reduced to 12-benzylindoloisoquinolines $5\mathbf{a} - \mathbf{c}$ in good yields, with retained aromaticity of the polyfused framework (Scheme 3). Their structures were confirmed by UV and $^1\mathrm{H}$ NMR spectra. Thus the UV spectrum of compound $5\mathbf{a}$ shows four absorption bands ($\lambda_{\mathrm{max}} = 290, 307, 362, \mathrm{and} 370 \mathrm{nm}$) only slightly differing from those in the spectrum of parent tetracycle $\mathbf{4}$ ($\lambda_{\mathrm{max}} = 286, 305, 366, \mathrm{and} 370 \mathrm{nm}$). This indicates the retained aromaticity of the indolizine fragment. Molecular formulas of compounds $5\mathbf{a} - \mathbf{c}$ were confirmed by their mass spectra containing $[\mathrm{M}]^+$ molecular ion peaks of maximum intensity. In all cases, salts $\mathbf{3}$ undergo side hydrogenolysis to give indoloisoquinoline $\mathbf{4}$ (3–5%) and its 5,6-dihydro derivative $\mathbf{1}$ (0.5–1%).

There were even better grounds to expect stable tetrahydro compounds of type **B** to form from 12-benzylidene-5,6-dihydro derivatives **2a**—**c** in the same system (NaBH₄—TFA) since one double bond in the starting reagent is already reduced. However, the reaction products were 12-benzyl-5,6-dihydroindoloisoquinolines **6a**—**c** in somewhat lower yields than for **5a**—**c**.

Accompanying reductive elimination of the benzyl group gave compound 1 in $\leq 5\%$ yield.

Thus, the exocyclic C(12)=C(13) bond conjugated with the pyrrolenine ring in quaternary salts 2 and 3 undergoes unusual reduction with sodium borohydride,

which enables us to propose a new two-step route for arylmethylation of the pyrrole ring in indolizine derivatives.

Fluorescence was found for compounds 1, 2a-d,f, 3a-c, 4, 5b,c, and 6b,c (see Table 1). The frameworks of 3–5 are completely aromatic, and their fluorescence maxima appears at 382-454 nm; having a longer π -conjugation chain, arylidene salts 3a-c fluoresce in the longer-wavelength range ($\lambda_{max} = 408-454$ nm) compared to 12-benzylindoloisoquinolines 5b,c ($\lambda_{max} = 382-386$ nm).

The π -conjugation chain in salts 3a,b is longer than in compound 4; hence it is not surprising that a fluorescence band experiences a bathochromic shift from $\lambda_{max} = 444$ nm in 4 to $\lambda_{max} = 452$ and 454 nm in 3a,b, respectively. This is not the case of nitrobenzylidene trifluoroacetate 3c, which fluoresces in the shorter-wavelength range ($\lambda_{max} = 408$ nm). The NO_2 group is known to often affect fluorescent properties specifically. The hypsochromic shift of the fluorescence band for compound 3c is probably due to strong electron-withdrawing properties of the excited NO_2 group; as a result, the electron density in the $S_0 \rightarrow S_1$ transition can be displaced in the opposite direction to the charge transfer from the C(12) atom. Apparently, a competition between these two processes loosens the double bond between the *para*-nitrobenzylidene and dibenzo-

^{*} The signals overlap.

Scheme 3

CF₃COO⁻
R

2a-c

NaBH₄

$$CF_3COO^-$$

NaBH₄
 CF_3COO^-

NaBH₄
 CF_3COO^-

NaBH₄
 CF_3COO^-

NaBH₄
 CH_2
 CH_2

3, 5, 6: R = H(a), OMe(b), $NO_2(c)$

indolizine fragments, which in turn reduces π -conjugation in the molecule. When the trifluoroacetate anion in salt 3c is replaced by an acetate or trichloroacetate one, the fluorescence bands experience a significant shift ($\lambda_{max} = 377$ and 446 nm, respectively) attributed to the degree of dissociation of these salts in solution.

The spectra of 5,6-dihydro compounds 2 and 6 show fluorescence maxima in the shorter-wavelength range ($\lambda_{max} = 368-388$ nm) compared to aromatic analogs 3 and 5 and mainly have a diffuse vibrational structure. Apparently, both effects are due to the presence of a $-CH_2-CH_2-$ bridge, which breaks one of the π -conjugation chains. In addition, molecules 2 and 6 become less planar in the excited state in ethanol, as evidenced by a diffuse character of their fluorescence spectra.

Experimental

Compounds were isolated and purified by crystallization and column chromatography on L-60 silica gel (40/100). The purity of the products was checked by TLC on Silufol UV-254 plates in heptane—ether (1:1); spots were visualized with iodine vapor. $^1\mathrm{H}$ NMR spectra were recorded on a Bruker WP-250 instrument

(250 MHz) in CDCl₃ with Me₄Si as the internal standard. IR spectra were recorded on a UR-20 instrument (in pellets with KBr). Mass spectra were obtained with an MKh-1303 spectrometer (ionizing voltage 70 eV). Fluorescence spectra were measured on a Shimadzu RF-540 spectrofluorometer. Ethanol was used as a solvent; its purity was checked by UV absorption and fluorescence spectra. The concentration of solutions of the compounds studied in EtOH was ~ 10^{-6} mol L⁻¹.

12-Arylidene-5,6-dihydroindolo[2,1-a]isoquinolinium trifluoroacetates 2a—f (general procedure). Trifluoroacetic acid (10 mL) and an aromatic aldehyde (4.6 mmol) were successively added to a stirred, ice-cooled solution of 5,6-dihydroindoloisoquinoline 1 (4.6 mmol) in 25 mL of THF. The reaction mixture was kept at ~20 °C for 6 h. The solvents were removed *in vacuo*, and the residue was recrystallized from EtOH and purified by chromatography on SiO₂. The characteristics of trifluoroacetates 2a—f are given in Tables 1 and 2.

Reduction of indolo[2,1-a]isoquinoline 4 in a NaBH₄—CF₃COOH system. Sodium borohydride (0.46 g, 12 mmol) was added in 0.1-g portions over 20 min to a vigorously stirred ice-cooled mixture of indoloisoquinoline 4 (0.65 g, 2.9 mmol) in 15 mL of anhydrous THF and 5.8 mL of TFA. The reaction mixture was stirred at ~20 °C for 6 h. The solvent and the excess of TFA were removed *in vacuo*. The residue was treated with a saturated aqueous solution of NaHCO₃. The product was extracted with CHCl₃ (4×10 mL), and the extract was dried over anhydrous Na₂SO₄. The chloroform was removed, and the oily residue was purified by column chromatography on SiO₂ to give 5,6-dihydroindoloisoquinoline 1 (0.13 g, 20%). Product 1 is identical in spectroscopic characteristics with an authentic sample. 9

Hydrogenation of 12-benzylideneindoloisoquinolinium trifluoroacetate 2a over Re_2S_7 . The reaction was carried out according to the known procedure. Rhenium heptasulfide (0.05 g), salt 2a (0.5 g, 1.2 mmol), and benzene (10 mL) were placed in a reaction vessel. Hydrogenation was performed at 250 °C and a hydrogen pressure of 140 atm for 2 h. Purification and separation of the catalyzate on SiO_2 gave nonsubstituted 5,6-dihydroindoloisoquinoline 1 (0.25 g, 96%). Product 1 is identical in characteristics with an authentic sample.

Reduction of 12-arylideneindoloisoquinolinium trifluoroacetates 3a-c and their 5,6-dihydro analogs 2a-c in a NaBH₄-CF₃COOH system. The synthesis of 12-benzylindolo[2,1-a]isoquinolines 5a-c and 12-benzyl-5,6-dihydroindolo[2,1-a]isoquinolines 6a—c (general procedure). Trifluoroacetic acid (1 mL, 1.54 g, 13.5 mmol) was added dropwise to a stirred. ice-cooled suspension of an indoloisoquinolinium salt (3a-c or 2a-c) (0.5 mmol) and NaBH₄ (0.073 g, 1.92 mmol) in 5 mL of anhydrous THF. The reaction mixture was stirred at ~20 °C for 6 h. The solvent and the excess of TFA were removed in vacuo. The residue was neutralized with a saturated solution of NaHCO₃, and the product was extracted with CHCl₃ (5×10 mL). The combined extracts were dried over anhydrous Na₂SO₄. The solvent was removed, and the residue was crystallized from EtOH or purified by column chromatography on SiO2 in ether-hexane (1:1). 12-Benzylindoloisoquinolines 5a-c or 6a-c were isolated as slightly colored crystals. Side hydrogenolysis of compounds 3a-c gave indoloisoquinolines 1 and 4 in 0.5-1% and 3-5% yields, respectively; the yield of indoloisoquinoline 4 from compounds 2a-c was ~5%.

References

- A. T. Soldatenkov, Zh. Ntaganda, S. A. Soldatova, Kh. A. R. Alarkon, B. N. Anisimov, and N. I. Golovtsov, *Khim. Geterotsikl. Soedin.*, 1999, 786 [Chem. Heterocycl. Compd., 1999, 35, 699 (Engl. Transl.)].
- M. A. Ryashentseva and N. S. Prostakov, *Khim. Geterotsikl. Soedin.*, 1992, 1443 [*Chem. Heterocycl. Compd.*, 1992, 28, 1229 (Engl. Transl.)].
- N. M. Kolyadina, A. T. Soldatenkov, M. A. Ryashentseva, and N. S. Prostakov, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 180 [*Russ. Chem. Bull.*, 1996, 45, 171 (Engl. Transl.)].
- 4. T. Kametani, K. Fukumoto, and T. Nakano, *J. Heterocycl. Chem.*, 1972, **9**, 1363.
- S. A. Soldatova, Kh. A. R. Alarkon, Zh. A. Mamyrbekova, L. I. Kryvenko, Zh. Ntaganda, M. A. Ryashentseva, and A. T.

- Soldatenkov, Khim. Geterotsikl. Soedin., 1994, 377 [Chem. Heterocycl. Compd., 1994, 30, 73 (Engl. Transl.)].
- R. E. Lyle, D. A. Nelson, and P. S. Anderson, *Tetrahedron Lett.*, 1962, 553.
- Comprehensive Organic Chemistry, Vol. 4, Eds. D. Barton and W. D. Ollis, Pergamon Press, Oxford—New York, 1979.
- 8. B. M. Krasovitskii and B. M. Bolotin, *Organicheskie lyuminofory* [*Organic Luminophores*], Khimiya, Moscow, 1984, 336 (in Russian).
- 9. A. Kh. A. Rodriguez, S. A. Soldatova, A. T. Soldatenkov, M. A. Ryashentseva, and N. S. Prostakov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 1413 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1991, **40**, 1253 (Engl. Transl.)].

Received January 10, 2002; in revised form April 2, 2002